NOTE ON MMAT 5010: LINEAR ANALYSIS (2017 1ST TERM)

CHI-WAI LEUNG

1. Lecture 1: Normed spaces

Throughout this note, we always denote $\mathbb K$ by the real field $\mathbb R$ or the complex field $\mathbb C$. Let $\mathbb N$ be the set of all natural numbers. Also, we write a sequence of numbers as a function $x : \{1, 2, ...\} \to \mathbb{K}$.

Definition 1.1. Let X be a vector space over the field K. A function $\|\cdot\| : X \to \mathbb{R}$ is called a norm on X if it satisfies the following conditions.

(i) $||x|| \geq 0$ for all $x \in X$ and $||x|| = 0$ if and only if $x = 0$.

(ii) $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{K}$ and $x \in X$.

(iii) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$.

In this case, the pair $(X, \|\cdot\|)$ is called a normed space. Also, the distance between the elements x and y in X is defined by $||x - y||$.

The following examples are important classes in the study of functional analysis.

Example 1.2. Consider
$$
X = \mathbb{K}^n
$$
. Put

$$
||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}
$$
 and $||x||_{\infty} := \max_{i=1,\dots,n} |x_i|$

for $1 \leq p < \infty$ and $x = (x_1, ..., x_n) \in \mathbb{K}^n$.

Then $\|\cdot\|_p$ (called the usual norm as $p=2$) and $\|\cdot\|_{\infty}$ (called the sup-norm) all are norms on \mathbb{K}^n .

Example 1.3. Put

$$
c_0 := \{(x(i)) : x(i) \in \mathbb{K}, \lim |x(i)| = 0\} (called the null sequence space)
$$

and

$$
\ell^\infty:=\{(x(i)):x(i)\in\mathbb K,\ \sup_i|x(i)|<\infty\}.
$$

Then c_0 is a subspace of ℓ^{∞} . The sup-norm $\|\cdot\|_{\infty}$ on ℓ^{∞} is defined by

$$
||x||_{\infty} := \sup_{i} |x(i)|
$$

for $x \in \ell^{\infty}$. Let

 $c_{00} := \{(x(i)) : \text{ there are only finitly many } x(i) \text{'s are non-zero}\}.$

Also, c_{00} is endowed with the sup-norm defined above and is called the finite sequence space.

Example 1.4. For $1 \leq p < \infty$, put

$$
\ell^p := \{(x(i)) : x(i) \in \mathbb{K}, \sum_{i=1}^{\infty} |x(i)|^p < \infty\}.
$$

Also, ℓ^p is equipped with the norm

$$
||x||_p := (\sum_{i=1}^{\infty} |x(i)|^p)^{\frac{1}{p}}
$$

Date: October 15, 2017.

for $x \in \ell^p$. Then $\| \cdot \|_p$ is a norm on ℓ^p (see [2, Section 9.1]).

Example 1.5. Let $C^b(\mathbb{R})$ be the space of all bounded continuous \mathbb{R} -valued functions f on \mathbb{R} . Now $C^b(\mathbb{R})$ is endowed with the sup-norm, that is,

$$
\|f\|_\infty=\sup_{x\in\mathbb{R}}|f(x)|
$$

for every $f \in C^b(\mathbb{R})$. Then $\|\cdot\|_{\infty}$ is a norm on $C^b(\mathbb{R})$.

Also, we consider the following subspaces of $C^b(X)$.

Let $C_0(\mathbb{R})$ (resp. $C_c(\mathbb{R})$) be the space of all continuous R-valued functions f on R which vanish at infinity (resp. have compact supports), that is, for every $\varepsilon > 0$, there is a $K > 0$ such that $|f(x)| < \varepsilon$ (resp. $f(x) \equiv 0$) for all $|x| > K$.

It is clear that we have $C_c(\mathbb{R}) \subseteq C_0(\mathbb{R}) \subseteq C^b(\mathbb{R})$.

Now $C_0(\mathbb{R})$ and $C_c(\mathbb{R})$ are endowed with the sup-norm $\|\cdot\|_{\infty}$.

Notation 1.6. From now on, $(X, \|\cdot\|)$ always denotes a normed space over a field K. For $r > 0$ and $x \in X$, let

- (i) $B(x,r) := \{y \in X : ||x y|| < r\}$ (called an open ball with the center at x of radius r) and $B^*(x,r) := \{y \in X : 0 < ||x - y|| < r\}$
- (ii) $B(x,r) := \{y \in X : ||x y|| \leq r\}$ (called a closed ball with the center at x of radius r).

Put $B_X := \{x \in X : ||x|| \leq 1\}$ and $S_X := \{x \in X : ||x|| = 1\}$ the closed unit ball and the unit sphere of X respectively.

Definition 1.7. Let A be a subset of X .

- (i) A point $a \in A$ is called an interior point of A if there is $r > 0$ such that $B(a, r) \subseteq A$. Write $int(A)$ for the set of all interior points of A.
- (ii) A is called an open subset of X if $int(A) = A$.

Example 1.8. We keep the notation as above.

- (i) Let $\mathbb Z$ and $\mathbb Q$ denote the set of all integers and rational numbers respectively If $\mathbb Z$ and $\mathbb Q$ both are viewed as the subsets of \mathbb{R} , then $int(\mathbb{Z})$ and $int(\mathbb{Q})$ both are empty.
- (ii) The open interval $(0,1)$ is an open subset of $\mathbb R$ but it is not an open subset of $\mathbb R^2$. In fact, $int(0,1) = (0,1)$ if $(0,1)$ is considered as a subset of R but $int(0,1) = \emptyset$ while $(0,1)$ is viewed as a subset of \mathbb{R}^2 .
- (iii) Every open ball is an open subset of X (**Check!!**).

Definition 1.9. We say that a sequence (x_n) in X converges to an element $a \in X$ if $\lim \|x_n-a\| =$ 0, that is, for any $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that $||x_n - a|| < \varepsilon$ for all $n \geq N$.

In this case, (x_n) is said to be convergent and a is called a limit of the sequence (x_n) .

Remark 1.10.

(i) If (x_n) is a convergence sequence in X, then its limit is unique. In fact, if a and b both are the limits of (x_n) , then we have $||a-b|| \le ||a-x_n|| + ||x_n-b|| \to 0$. So, $||a-b|| = 0$ which implies that $a = b$.

From now on, we write $\lim x_n$ for the limit of (x_n) provided the limit exists.

(ii) The definition of a convergent sequence (x_n) depends on the underling space where the sequence (x_n) sits in. For example, for each $n = 1, 2...$, let $x_n(i) := 1/i$ as $1 \le i \le n$ and $x_n(i) = 0$ as $i > n$. Then (x_n) is a convergent sequence in ℓ^{∞} but it is not convergent in c_{00} .

Definition 1.11. Let A be a subset of X.

- (i) A point $z \in X$ is called a limit point of A if for any $\varepsilon > 0$, there is an element $a \in A$ such that $0 < ||z - a|| < \varepsilon$, that is, $B^*(z, \varepsilon) \cap A \neq \emptyset$ for all $\varepsilon > 0$.
- Furthermore, if A contains the set of all its limit points, then A is said to be closed in X. (ii) The closure of A, write \overline{A} , is defined by

 $\overline{A} := A \cup \{z \in X : z \text{ is a limit point of } A\}.$

Remark 1.12. With the notation as above, it is clear that a point $z \in \overline{A}$ if and only if $B(z, r) \cap A \neq \emptyset$ for all $r > 0$. This is also equivalent to saying that there is a sequence (x_n) in A such that $x_n \to a$. In fact, this can be shown by considering $r = \frac{1}{n}$ $\frac{1}{n}$ for $n = 1, 2...$

Proposition 1.13. With the notation as before, we have the following assertions.

- (i) A is closed in X if and only if its complement $X \setminus A$ is open in X.
- (ii) The closure A is the smallest closed subset of X containing A. The "smallest" in here means that if F is a closed subset containing A, then $\overline{A} \subseteq F$. Consequently, A is closed if and only if $\overline{A} = A$.

Proof. If A is empty, then the assertions (i) and (ii) both are obvious. Now assume that $A \neq \emptyset$. For part (i), let $C = X \setminus A$ and $b \in C$. Suppose that A is closed in X. If there exists an element $b \in C \setminus int(C)$, then $B(b, r) \nsubseteq C$ for all $r > 0$. This implies that $B(b, r) \cap A \neq \emptyset$ for all $r > 0$ and hence, b is a limit point of A since $b \notin A$. It contradicts to the closeness of A. So, $A = int(A)$ and thus, A is open.

For the converse of (i), assume that C is open in X. Assume that A has a limit point z but $z \notin A$. Since $z \notin A$, $z \in C = int(C)$ because C is open. Hence, we can find $r > 0$ such that $B(z, r) \subseteq C$. This gives $B(z, r) \cap A = \emptyset$. This contradicts to the assumption of z being a limit point of A. So, A must contain all of its limit points and hence, it is closed.

For part (ii), we first claim that A is closed. Let z be a limit point of A. Let $r > 0$. Then there is $w \in B^*(z,r) \cap \overline{A}$. Choose $0 < r_1 < r$ small enough such that $B(w,r_1) \subseteq B^*(z,r)$. Since w is a limit point of A, we have $\emptyset \neq B^*(w,r_1) \cap A \subseteq B^*(z,r) \cap A$. So, z is a limit point of A. Thus, $z \in \overline{A}$ as required. This implies that \overline{A} is closed.

It is clear that \overline{A} is the smallest closed set containing A.

The last assertion follows from the minimality of the closed sets containing A immediately. The proof is finished. \square

Example 1.14. Retains all notation as above. We have $\overline{c_{00}} = c_0 \subseteq \ell^{\infty}$. Consequently, c_0 is a closed subspace of ℓ^{∞} but c_{00} is not.

Proof. We first claim that $\overline{c_{00}} \subseteq c_0$. Let $z \in \ell^{\infty}$. It suffices to show that if $z \in \overline{c_{00}}$, then $z \in c_0$, that is, $\lim z(i) = 0$. Let $\varepsilon > 0$. Then there is $x \in B(z, \varepsilon) \cap c_{00}$ and hence, we have $|x(i) - z(i)| < \varepsilon$ for all $i \to \infty$ is ince $x \in c_{00}$, there is $i_0 \in \mathbb{N}$ such that $x(i) = 0$ for all $i \geq i_0$. Therefore, we have $|z(i)| = |z(i) - x(i)| < \varepsilon$ for all $i \geq i_0$. So, $z \in c_0$ as desired.

For the reverse inclusion, let $w \in c_0$. It needs to show that $B(w, r) \cap c_{00} \neq \emptyset$ for all $r > 0$. Let $r > 0$. Since $w \in c_0$, there is i_0 such that $|w(i)| < r$ for all $i \ge i_0$. If we let $x(i) = w(i)$ for $1 \le i < i_0$ and $x(i) = 0$ for $i \ge i_0$, then $x \in c_{00}$ and $||x - w||_{\infty} := \sup |x(i) - w(i)| < r$ as required. $i=1,2...$

2. Lecture 2: Banach Spaces

A sequence (x_n) in X is called a **Cauchy sequence** if for any $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that $||x_m - x_n|| < \varepsilon$ for all $m, n \geq N$. We have the following simple observation.

Lemma 2.1. Every convergent sequence in X is a Cauchy sequence.

The following notation plays an important role in mathematics.

Definition 2.2. A subset A of X is said to be complete if if every Cauchy sequence in A is convergent.

X is called a **Banach space** if X is a complete normed space.

Example 2.3. With the notation as above, we have the following examples of Banach spaces.

- (i) If \mathbb{K}^n is equipped with the usual norm, then \mathbb{K}^n is a Banach space.
- (ii) ℓ^{∞} is a Banach space. In fact, if (x_n) is a Cauchy sequence in ℓ^{∞} , then for any $\varepsilon > 0$, there is $N \in \mathbb{N}$, we have

$$
|x_n(i) - x_m(i)| \le ||x_n - x_m||_{\infty} < \varepsilon
$$

for all $m, n \ge N$ and $i = 1, 2,...$ Thus, if we fix $i = 1, 2, ...$, then $(x_n(i))_{n=1}^{\infty}$ is a Cauchy sequence in K. Since K is complete, the limit $\lim_n x_n(i)$ exists in K for all $i = 1, 2,...$ Nor for each $i = 1, 2...$, we put $z(i) := \lim_{n} x_n(i) \in \mathbb{K}$. Then we have $z \in \ell^{\infty}$ and $||z-x_n||_{\infty} \to 0$. So, $\lim_{n} x_n = z \in \ell^{\infty}$ (Check !!!!). Thus ℓ^{∞} is a Banach space.

- (iii) ℓ^p is a Banach space for $1 \leq p < \infty$. The proof is similar to the case of ℓ^{∞} .
- (iv) $C[a, b]$ is a Banach space.
- (v) Let $C_0(\mathbb{R})$ be the space of all continuous \mathbb{R} -valued functions f on \mathbb{R} which are vanish at infinity, that is, for every $\varepsilon > 0$, there is a $M > 0$ such that $|f(x)| < \varepsilon$ for all $|x| > M$. Now $C_0(\mathbb{R})$ is endowed with the sup-norm, that is,

$$
||f||_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|
$$

for every $f \in C_0(\mathbb{R})$. Then $C_0(\mathbb{R})$ is a Banach space.

Proposition 2.4. Let Y be a subspace of a Banach space X. Then Y is a Banach space if and only if Y is closed in X .

Proof. For the necessary condition, we assume that Y is a Banach space. Let $z \in \overline{Y}$. Then there is a convergent sequence (y_n) in Y such that $y_n \to z$. Since (y_n) is convergent, it is also a Cauchy sequence in Y. Then (y_n) is also a convergent sequence in Y because Y is a Banach space. So, $z \in Y$. This implies that $\overline{Y} = Y$ and hence, Y is closed.

For the converse statement, assume that Y is closed. Let (z_n) be a Cauchy sequence in Y. Then it is also a Cauchy sequence in X. Since X is complete, $z := \lim z_n$ exists in X. Note that $z \in Y$ because Y is closed. So, (z_n) is convergent in Y. Thus, Y is complete as desired.

Corollary 2.5. c_0 is a Banach space but the finite sequence c_{00} is not.

Proposition 2.6. Let $(X, \| \cdot \|)$ be a normed space. Then there is a normed space $(X_0, \| \cdot \|_0)$, together with a linear map $i: X \to X_0$, satisfy the following condition.

- (i) X_0 is a Banach space.
- (ii) The map i is an isometry, that is, $||i(x)||_0 = ||x||$ for all $x \in X$.
- (iii) the image $i(X)$ is dense in X_0 , that is, $i(X) = X_0$.

Moreover, such pair (X_0, i) is unique up to isometric isomorphism in the following sense: if $(W, \|\cdot\|)$ $\| \cdot \|$ is a Banach space and an isometry j : $X \to W$ is an isometry such that $j(X) = W$, then there is an isometric isomorphism ψ from X_0 onto W such that

$$
j = \psi \circ i : X \to X_0 \to W.
$$

In this case, the pair (X_0, i) is called the completion of X.

Example 2.7. Proposition 2.6 cannot give an explicit form of the completion of a given normed space. The following examples are basically due to the uniqueness of the completion.

- (i) If X is a Banach space, then the completion of X is itself.
- (ii) By Corollary 2.5, the completion of the finite sequence space c_{00} is the null sequence space $c₀$.
- (iii) The completion of $C_c(\mathbb{R})$ is $C_0(\mathbb{R})$.

Definition 2.8. A subset A of a normed space X is said to be nowhere dense in X if $int(\overline{A}) = \emptyset$.

Example 2.9.

(i) The set of all integers $\mathbb Z$ is a nowhere dense subset of $\mathbb R$.

(ii) The set $(0,1)$ is a nowhere dense subset of \mathbb{R}^2 but it is not a nowhere dense subset of \mathbb{R} .

(iii) Let $A := \{x \in c_{00} : x(n) \geq 0, \text{ for all } n = 1, 2...\}$. Notice that A is a closed subset of c_{00} . We claim that $int(A) = \emptyset$. In fact, let $a \in A$ and $r > 0$. Since $a \in c_{00}$, there is N such that $a(n) = 0$ for all $n \geq N$. Now define $z \in c_{00}$ by $z(n) = x(n)$ for $n \neq N$ and $z(N) := \frac{-r}{2}$. Then $z \in c_{00} \setminus A$ and $||z - a||_{\infty} < r$. So, int(A) = \emptyset and thus, A is a nowhere dense subset of c₀₀.

Lemma 2.10. Let X be a Banach space. We have the following assertions.

- (i) A subset A of X is nowhere dense in X if and only if the complement of \overline{A} is an open dense subset of X.
- (ii) If (W_n) is a sequence of open dense subsets of X, then $\bigcap_{n=1}^{\infty} W_n \neq \emptyset$.

Proof. For (i), let $z \in X$ and $r > 0$. It is clear that we have $B(z, r) \nsubseteq \overline{A}$ if and For (ii), we first fix an element $x_1 \in W_1$. Since W_1 is open, then there is $r_1 > 0$ such that $B(x_1, r_1) \subseteq W_1$. Notice that since W_2 is open dense in X, we can find an element $x_2 \in B(x_1, r_1) \cap W_2$ and $0 < r_2 < r_1/2$ such that $\overline{B(x_2, r_2)} \subseteq B(x_1, r_1) \cap W_2$. To repeat the same step, we can get a sequence of element (x_n) in X and a sequence of positive numbers (r_n) such that

(a) $r_{k+1} < r_k/2$, and

(b) $\overline{B(x_{k+1}, r_{k+1})} \subseteq B(x_k, r_k) \cap W_{k+1}$ for all $k = 1, 2, ...$

From this, we see that (x_k) is a Cauchy sequence in X. Then by the completeness of X, $\lim x_k = a$ exists in X. It remains to show that $a \in \bigcap W_k$. Fix N. Note that by the condition (b) above, we see that $x_k \in \overline{B(x_N, r_N)} \subseteq B(x_{N-1}, r_{N-1}) \cap W_N$ for all $k > N$. Since $\overline{B(x_N, r_N)}$ is closed, we see that $a = \lim x_k \in B(x_N, r_N)$. This implies that $a \in W_N$. Therefore, $\bigcap W_k$ is non-empty as required.

Theorem 2.11. Baire Category Theorem: Let X be a Banach space. Suppose that $X =$ $\bigcup_{n=1}^{\infty} A_n$ for a sequence of subsets (A_n) of X. Then there is A_{n_0} not nowhere dense in X.

Proof. Suppose that each A_n is nowhere dense in X. If we put $W_n := \overline{A}_n^c$ $\sum_{n=1}^{\infty}$, then each W_n is an open dense subset of X by Lemma 2.10 (*i*). Lemma 2.10 (ii) implies that $\bigcap W_n \neq \emptyset$. This gives

$$
X \supsetneq \left(\bigcap W_n\right)^c = \bigcup W_n^c = \bigcup \overline{A}_n \supseteq \bigcup A_n = X.
$$

This leads to a contradiction. The proof is finished. \square

3. Lecture 3: Series in normed spaces

Throughout this section, let X be a normed space.

Let (x_n) be a sequence elements in X. Now for each $n = 1, 2, \dots$, put $s_n = x_1 + \dots + x_n$ and call the *n*-th partial sum of a formal series $\sum_{n=1}^{\infty} x_n$.

Definition 3.1. With the notation as above, we say that a series $\sum_{n=1}^{\infty} x_n$ is convergent in X if the sequence of the sequence of partial sums (s_n) is convergent in X. In this case, we also write

$$
\sum_{n=1}^{\infty} x_n := \lim_{n} s_n \in X.
$$

Moreover, we say that a series $\sum_{n=1}^{\infty} x_n$ is absolutely convergent in X if $\sum_{n=1}^{\infty} ||x_n|| < \infty$.

Lemma 3.2. Let (x_n) be a Cauchy sequence in a normed space X. If (x_n) has a convergent subsequence in X, then (x_n) itself is convergent too.

Proof. Let (x_{n_k}) be a convergent subsequence of (x_n) and let $L := \lim_k x_{n_k} \in X$. We are going to show that $\lim_{n} x_n = L$.

Let $\varepsilon > 0$. Since (x_n) is a Cauchy sequence, there is $N \in \mathbb{N}$ such that $||x_m - x_n|| < \varepsilon$ for all $m, n \geq N$. On the other hand, since $\lim_k x_{n_k} = L$, there is $K \in \mathbb{N}$ such that $n_K \geq N$ and $||L - x_{n_K}|| < \varepsilon$. Thus, if $n \ge n_K$, we see that $||x_n - L|| \le ||x_n - x_{n_K}|| + ||x_{n_K} - L|| < 2\varepsilon$. The proof is finished. \Box

Proposition 3.3. Let X be a normed space. Then the following statements are equivalent.

- (i) X is a Banach space.
- (ii) Every absolutely convergent series in X is convergent.

Proof. For showing $(i) \Rightarrow (ii)$, assume that X is a Banach space and let $\sum x_k$ be an absolutely convergent series in X. Put $s_n := \sum_{k=1}^n x_k$ the *n*-th partial sum of $\sum x_k$. Let $\varepsilon > 0$. Since the series $\sum_k x_k$ is absolutely convergent, there is $N \in \mathbb{N}$ such that \sum_k $n+1\leq k\leq n+p$ $||x_k|| < \varepsilon$ for all $n \geq N$

and $p = 1, 2,...$ This gives $||s_{n+p} - s_n|| \leq \sum$ $n+1 \leq k \leq n+p$ $||x_k|| < \varepsilon$ for all $n \geq N$ and $p = 1, 2,...$ Thus,

 (s_n) is a Cauchy sequence in X. Then by the completeness of X, we see that the series $\sum x_k$ is convergent in X as desired.

Now suppose that the condition (ii) holds. Let (x_n) be a Cauchy sequence in X. Notice that by the definition of a Cauchy sequence, we can find a subsequence (x_{n_k}) of (x_n) such that $||x_{n_{k+1}} - x_{n_k}|| <$ $1/2^k$ for all $k = 1, 2, \ldots$. From this, we see that the series $\sum_k (x_{n_{k+1}} - x_{n_k})$ is absolutely convergent in X. Then the condition (ii) tells us that the series $\sum_{k}(x_{n_{k+1}} - x_{n_k})$ is convergent in X. Notice that

 $x_{n_m} = x_{n_1} + \sum_{m=1}^{m}$ $_{k=1}$ $(x_{n_{k+1}} - x_{n_k})$ for all $m = 1, 2, \dots$. Therefore, $(x_{n_k})_{k=1}^{\infty}$ is a convergent subsequence

of (x_n) . Then by Lemma 3.2, we see that (x_n) is convergent in X. The proof is finished.

 \Box

Recall that a basis of a vector space V over K is a collection of vectors in V, say $(v_i)_{i\in I}$, such that for each element $x \in V$, we have a unique expression

$$
x = \sum_{i \in I} \alpha_i v_i
$$

for some $\alpha_i \in \mathbb{K}$ and all $\alpha_i = 0$ except finitely many.

One of fundamental properties of a vector space is that every vector space must have a basis. The proof of this assertion is due to the Zorn's lemma.

Definition 3.4. A sequence (x_n) is called a Schauder basis for a normed space X if for each element $x \in X$, there is a unique sequence (α_n) in K such that

(3.1)
$$
x = \sum_{n=1}^{\infty} \alpha_n x_n.
$$

 $n=1$

Remark 3.5.

- (i) Notice that a Schauder basis must be linearly independent vectors. So, it is clear that every Schauder basis is a vector basis for a finite dimensional vector space. However, a Schauder basis need not be a vector basis for a normed space in general. For example, if we consider the sequence (e_n) in c_0 given by $e_n(n) = 1$; otherwise, $e_n(i) = 0$, then (e_n) is a Schauder basis for c_0 but it it is not a vector basis.
- (ii) In the Definition 3.4, the expression 3.1 depends on the order of (x_n) . More precise, if $\sigma : \{1, 2...\} \rightarrow \{1, 2...\}$ is a bijection, then the Eq 3.1 CANNOT assure that we still have the expression $x = \sum_{n=0}^{\infty}$ $\alpha_{\sigma(n)} x_{\sigma(n)}$ for each $x \in X$.

Example 3.6. (i) If X is of finite dimension, then the vector bases are the same as the Schauder bases.

(ii) Let e_n be a sequence defined as in Remark 3.5(i), then the sequence (e_n) is a Schauder basis for the spaces c_0 and ℓ^p for $1 \leq p < \infty$.

Definition 3.7. A normed space X is said to be separable if there is a countable dense subset of X .

Example 3.8. (i) The space \mathbb{C}^n is separable. In fact, it is clear that $(\mathbb{Q} + i\mathbb{Q})^n$ is a countable dense subset of \mathbb{C}^n .

(ii) The space ℓ^{∞} is an important example of nonseparable Banach space. In fact, if we put $D := \{x \in \ell^{\infty} : x(i) = 0 \text{ or } 1\},\$ then D is an uncountable subset of ℓ^{∞} . Moreover, we have $\|x - y\|_{\infty} = 1$ for any $x, y \in D$ with $x \neq y$. Thus, $\{B(x, 1/2) : x \in D\}$ is an uncountable family of disjoint open balls of ℓ^{∞} . So, if C is a countable dense subset of ℓ^{∞} , then $C \cap B(x, 1/2) \neq \emptyset$ for all $x \in D$. Also, for each element $z \in C$, there is a unique element $x \in D$ such that $z \in B(x, 1/2)$. It leads to a contradiction since D is uncountable. Therefore, ℓ^{∞} is nonseparable.

Proposition 3.9. Let X be a normed space. Then X is separable if and only if there is a countable subset A of X such that the linear span of A is dense in X, that is, for any element $x \in X$ and $\varepsilon > 0$, there are finite many elements $x_1,..,x_N$ in A such that $\|x - \sum_{k=1}^N \alpha_k x_k\| < \varepsilon$ for some scalars $\alpha_1, \ldots, \alpha_N$.

Consequently, if X has a Schauder basis, then X is separable.

Proof. The necessary condition is clear.

We are now going to prove the converse statement. Suppose that X is the closed linear span of a countable subset A. Now let D be the linear span of A over the field $\mathbb{Q}+i\mathbb{Q}$. Since \mathbb{Q} is a countable dense subset of \mathbb{R} , this implies that D is a countable dense subset of X. Thus, X is separable. The last statement is clearly follows from the definition of a Schauder basis at once. \Box

By Proposition 3.9, we have the following important examples of separable Banach spaces at once.

Corollary 3.10. The spaces c_0 and ℓ^p for $1 \leq p < \infty$ all are separable.

Remark 3.11. Proposition 3.9 leads to the following natural question which was first raised by Banach (1932).

The Basis Problem: Does every separable Banach space have a Schauder basis? The answer is $''No''$.

This problem was completely solved by P. Enflo in 1973.

4. Lecture 4: Compact sets and finite dimensional normed spaces

Throughout this section, let (x_n) be a sequence in a normed space X. Recall that a subsequence $(x_{n_k})_{k=1}^{\infty}$ of (x_n) means that $(n_k)_{k=1}^{\infty}$ is a sequence of positive integers satisfying $n_1 < n_2 <$ $\cdots < n_k < n_{k+1} < \cdots$, that is, such sequence (n_k) can be viewed as a strictly increasing function $\mathbf{n}: k \in \{1, 2, ...\} \mapsto n_k \in \{1, 2, ...\}.$

In this case, note that for each positive integer N, there is $K \in \mathbb{N}$ such that $n_K \geq N$ and thus we have $n_k \geq N$ for all $k \geq K$.

Definition 4.1. A subset A of a normed space X is said to be compact (more precise, sequentially compact) if every sequence in A has a convergent subsequence with the limit in A.

Recall that a subset A is *closed* in X if and only if every convergent sequence (x_n) in A implies that $\lim x_n \in A$.

Proposition 4.2. If A is a compact subset of X, then A is closed and bounded.

Proof. It is clear that the result follows if $A = \emptyset$. So, we assume that A is non-empty. Assume that A is compact.

We first claim that A is closed. Let (x_n) be a sequence in A. Then by the compactness of A, there is a convergent subsequence (x_{n_k}) of (x_n) with $\lim_k x_{n_k} \in A$. So, if (x_n) is convergent, then $\lim_{n} x_n = \lim_{k} x_{n_k} \in A$. Therefore, A is closed.

Next, we are going to show the boundedness of A . Suppose that A is not bounded. Fix an element $x_1 \in A$. Since A is not bounded, we can find an element $x_2 \in A$ such that $||x_2 - x_1|| > 1$. Similarly, there is an element $x_3 \in A$ such that $||x_3 - x_k|| > 1$ for $k = 1, 2$. To repeat the same step, we can obtain a sequence (x_n) in A such that $||x_n-x_m|| > 1$ for $m \neq n$. From this, we see that the sequence (x_n) does not have a convergent subsequence. In fact, if (x_n) has a convergent subsequence (x_{n_k}) . Therefore, $(x_{n_k})_{k=1}^{\infty}$ is a Cauchy sequence in X. Then we can find a pair of sufficient large positive integers p and q with $p \neq q$ such that $||x_{n_p} - x_{n_q}|| < 1/2$. It leads to a contradiction because $||x_{n_p} - x_{n_q}|| > 1$ by the choice of the sequence (x_n) . Thus, A is bounded.

The following is an important characterization of a compact set in the the case $X = \mathbb{R}$. Warning: this result is not true for a general normed space X .

Let us first recall the following important theorem in real line.

Theorem 4.3. (Bolzano-Weierstrass Theorem) Every bounded sequence in \mathbb{R} has a convergent subsequence.

Proof. See [1, Theorem 3.4.8].

Theorem 4.4. Let A be a closed subset of \mathbb{R} . Then the following statements are equivalent.

- (i) A is compact.
- (ii) A is closed and bounded.

Proof. Part $(i) \Rightarrow (ii)$ follows from Proposition 4.2 immediately.

It remains to show $(ii) \Rightarrow (i)$. Suppose that A is closed and bounded.

Let (x_n) be a sequence in A. Thus, (x_n) . Then the Bolzano-Weierstrass Theorem assures that there is a convergent subsequence (x_{n_k}) . Then by the closeness of A, $\lim_k x_{n_k} \in A$. Thus A is compact.

The proof is finished. \square

Definition 4.5. We say that two norms $\|\cdot\|$ and $\|\cdot\|'$ on a vector space X are equivalent, write $\|\cdot\| \sim \|\cdot\|'$, if there are positive numbers c_1 and c_2 such that $c_1\|\cdot\| \leq \|\cdot\|' \leq c_2\|\cdot\|$ on X.

Example 4.6. Consider the norms $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$ on ℓ^1 . We are going to show that $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$ are not equivalent. In fact, if we put $x_n(i) := (1, 1/2, ..., 1/n, 0, 0, ...)$ for $n, i = 1, 2...$ Then $x_n \in \ell^1$ for all n. Notice that (x_n) is a Cauchy sequence with respect to the norm $\|\cdot\|_{\infty}$ but it is not a Cauchy sequence with respect to the norm $\|\cdot\|_1$. Hence $\|\cdot\|_1 \nsim \|\cdot\|_{\infty}$ on ℓ^1 .

Proposition 4.7. All norms on a finite dimensional vector space are equivalent.

Proof. Let X be a finite dimensional vector space and let $\{e_1, ..., e_N\}$ be a vector base of X. For each $x = \sum_{i=1}^{N} \alpha_i e_i$ for $\alpha_i \in \mathbb{K}$, define $||x||_0 = \sum_{i=1}^{n} |\alpha_i|$. Then $|| \cdot ||_0$ is a norm X. The result is obtained by showing that all norms $\|\cdot\|$ on X are equivalent to $\|\cdot\|_0$.

Notice that for each $x = \sum_{i=1}^{N} \alpha_i e_i \in X$, we have $||x|| \leq (\max_{1 \leq i \leq N} ||e_i||) ||x||_0$. It remains to find c > 0 such that $c\|\cdot\|_0 \leq \|\cdot\|$. In fact, let \mathbb{K}^N be equipped with the sup-norm $\|\cdot\|_{\infty}$, that is $\|(\alpha_1, ..., \alpha_N) \|_{\infty} = \max_{1 \leq 1 \leq N} |\alpha_i|$. Define a real-valued function f on the unit sphere $S_{\mathbb{K}^N}$ of \mathbb{K}^N by

$$
f:(\alpha_1,...,\alpha_N)\in S_{\mathbb{K}^N}\mapsto \|\alpha_1e_1+\cdots+\alpha_ne_N\|.
$$

Notice that the map f is continuous and $f > 0$. It is clear that $S_{\mathbb{K}^N}$ is compact with respect to the sup-norm $\|\cdot\|_{\infty}$ on \mathbb{K}^N . Hence, there is $c > 0$ such that $f(\alpha) \geq c > 0$ for all $\alpha \in S_{\mathbb{K}^N}$. This gives $||x|| \ge c||x||_0$ for all $x \in X$ as desired. The proof is finished.

The following result is clear. The proof is omitted here.

Lemma 4.8. Let X be a normed space. Then the closed unit ball B_X is compact if and only if every bounded sequence in X has a convergent subsequence.

Proposition 4.9. We have the following assertions.

- (i) All finite dimensional normed spaces are Banach spaces. Consequently, any finite dimensional subspace of a normed space must be closed.
- (ii) The closed unit ball of any finite dimensional normed space is compact.

Proof. Let $(X, \|\cdot\|)$ be a finite dimensional normed space. With the notation as in the proof of Proposition 4.7 above, we see that $\|\cdot\|$ must be equivalent to the norm $\|\cdot\|_0$. It is clear that X is complete with respect to the norm $\|\cdot\|_0$ and so is complete in the original norm $\|\cdot\|$. The Part (i) follows.

For Part (ii) , by using Lemma 4.8, we need to show that any bounded sequence has a convergent subsequence. Let (x_n) be a bounded sequence in X. Since all norms on a finite dimensional normed space are equivalent, it suffices to show that (x_n) has a convergent subsequence with respect to the norm $\|\cdot\|_0$.

Using the notation as in Proposition 4.7, for each x_n , put $x_n = \sum_{k=1}^N \alpha_{n,k} e_k$, $n = 1, 2,...$ Then by the definition of the norm $\|\cdot\|_0$, we see that $(\alpha_{n,k})_{n=1}^{\infty}$ is a bounded sequence in K for each $k = 1, 2..., N$. Then by the Bolzano-Weierstrass Theorem, for each $k = 1, ..., N$, we can find a

10 CHI-WAI LEUNG

convergent subsequence $(\alpha_{n_j,k})_{j=1}^{\infty}$ of $(\alpha_{n,k})_{n=1}^{\infty}$. Put $\gamma_k := \lim_{j \to \infty} \alpha_{n_j,k} \in \mathbb{K}$, for $k = 1, ..., N$. Put $x := \sum_{k=1}^{N} \gamma_k e_k$. Then by the definition of the norm $\|\cdot\|_0$, we see that $\|x_{n_j} - x\|_0 \to 0$ as $j \to \infty$. Thus, (x_n) has a convergent subsequence as desired. The proof is complete. \Box

In the rest of this section, we are going to show the converse of Proposition 4.9 (*ii*) also holds. Before showing the main theorem in this section, we need the following useful result.

Lemma 4.10. Riesz's Lemma: Let Y be a closed proper subspace of a normed space X . Then for each $\theta \in (0,1)$, there is an element $x_0 \in S_X$ such that $d(x_0, Y) := \inf \{ ||x_0 - y|| : y \in Y \} \ge \theta$.

Proof. Let $u \in X - Y$ and $d := \inf\{||u - y|| : y \in Y\}$. Notice that since Y is closed, $d > 0$ and hence, we have $0 < d < \frac{d}{\theta}$ because $0 < \theta < 1$. This implies that there is $y_0 \in Y$ such that $0 < d \leq ||u - y_0|| < \frac{d}{\theta}$ $\frac{d}{\theta}$. Now put $x_0 := \frac{u-y_0}{\|u-y_0\|}$ $\frac{u-y_0}{\|u-y_0\|} \in S_X$. We are going to show that x_0 is as desired. Indeed, let $y \in Y$. Since $y_0 + ||u - y_0||y \in Y$, we have

$$
||x_0 - y|| = \frac{1}{||u - y_0||} ||u - (y_0 + ||u - y_0||y)|| \ge d/||u - y_0|| > \theta.
$$

So, $d(x_0, Y) > \theta$.

Remark 4.11. The Riesz's lemma does not hold when $\theta = 1$.

Theorem 4.12. Let X be a normed space. Then the following statements are equivalent.

- (i) X is a finite dimensional normed space.
- (ii) The closed unit ball B_X of X is compact.
- (iii) Every bounded sequence in X has convergent subsequence.

Proof. The implication $(i) \Rightarrow (ii)$ follows from Proposition 4.9 (ii) at once.

Lemma 4.8 gives the implication $(ii) \Rightarrow (iii)$.

Finally, for the implication (iii) \Rightarrow (i), assume that X is of infinite dimension. Fix an element $x_1 \in S_X$. Let $Y_1 = \mathbb{K}x_1$. Then Y_1 is a proper closed subspace of X. The Riesz's lemma gives an element $x_2 \in S_X$ such that $||x_1 - x_2|| \ge 1/2$. Now consider $Y_2 = span\{x_1, x_2\}$. Then Y_2 is a proper closed subspace of X since dim $X = \infty$. To apply the Riesz's Lemma again, there is $x_3 \in S_X$ such that $||x_3 - x_k|| \ge 1/2$ for $k = 1, 2$. To repeat the same step, there is a sequence $(x_n) \in S_X$ such that $||x_m - x_n|| \ge 1/2$ for all $n \neq m$. Thus, (x_n) is a bounded sequence but it has no convergent subsequence by using the similar argument as in Proposition 4.2. So, the condition (iii) does not hold if dim $X = \infty$. The proof is finished.

5. Lecture 5: Bounded Linear Operators

Proposition 5.1. Let T be a linear operator from a normed space X into a normed space Y. Then the following statements are equivalent.

- (i) T is continuous on X.
- (ii) T is continuous at $0 \in X$.
- (iii) $\sup\{\|Tx\| : x \in B_X\} < \infty$.

In this case, let $||T|| = \sup{||Tx|| : x \in B_X\}$ and T is said to be bounded.

Proof. (*i*) \Rightarrow (*ii*) is obvious.

For $(ii) \Rightarrow (i)$, suppose that T is continuous at 0. Let $x_0 \in X$. Let $\varepsilon > 0$. Then there is $\delta > 0$ such that $||Tw|| < \varepsilon$ for all $w \in X$ with $||w|| < \delta$. Therefore, we have $||Tx - Tx_0|| = ||T(x - x_0)|| < \varepsilon$ for any $x \in X$ with $||x - x_0|| < \delta$. So, (i) follows.

For $(ii) \Rightarrow (iii)$, since T is continuous at 0, there is $\delta > 0$ such that $||Tx|| < 1$ for any $x \in X$ with $||x|| < \delta$. Now for any $x \in B_X$ with $x \neq 0$, we have $||\frac{\delta}{2}\rangle$ $\frac{\delta}{2}x \parallel \ \ & \ \delta.$ So, we see have $\Vert T(\frac{\delta}{2}) \Vert$ $\frac{\delta}{2}x$ || < 1 and hence, we have $||Tx|| < 2/\delta$. So, *(iii)* follows.

Finally, it remains to show $(iii) \Rightarrow (ii)$. Notice that by the assumption of (iii) , there is $M > 0$ such that $||Tx|| \leq M$ for all $x \in B_X$. So, for each $x \in X$, we have $||Tx|| \leq M||x||$. This implies that T is continuous at 0. The proof is complete. \Box

Corollary 5.2. Let $T : X \to Y$ be a bounded linear map. Then we have

 $\sup\{\|Tx\| : x \in B_X\} = \sup\{\|Tx\| : x \in S_X\} = \inf\{M > 0 : \|Tx\| \le M\|x\|, \ \forall x \in X\}.$

Proof. Let $a = \sup\{\|Tx\| : x \in B_X\}$, $b = \sup\{\|Tx\| : x \in S_X\}$ and $c = \inf\{M > 0 : \|Tx\| \leq \epsilon\}$ $M||x||, \forall x \in X$.

It is clear that $b \le a$. Now for each $x \in B_X$ with $x \ne 0$, then we have $b \ge ||T(x/||x||)|| =$ $(1/\|x\|)\|Tx\| \geq \|Tx\|$. So, we have $b \geq a$ and thus, $a = b$.

Now if $M > 0$ satisfies $||Tx|| \le M||x||$, $\forall x \in X$, then we have $||Tw|| \le M$ for all $w \in S_X$. So, we have $b \leq M$ for all such M. So, we have $b \leq c$. Finally, it remains to show $c \leq b$. Notice that by the definition of b, we have $||Tx|| \leq b||x||$ for all $x \in X$. So, $c \leq b$.

Proposition 5.3. Let X and Y be normed spaces. Let $B(X, Y)$ be the set of all bounded linear maps from X into Y. For each element $T \in B(X,Y)$, let

$$
||T|| = \sup{||Tx|| : x \in B_X}.
$$

be defined as in Proposition 5.1.

Then $(B(X, Y), \| \cdot \|)$ becomes a normed space.

Furthermore, if Y is a Banach space, then so is $B(X, Y)$.

In particular, if $Y = \mathbb{K}$, then $B(X, \mathbb{K})$ is a Banach space. In this case, put $X^* := B(X, \mathbb{K})$ and call it the dual space of X .

Proof. One can directly check that $B(X, Y)$ is a normed space (Do It By Yourself!).

We are going to show that $B(X, Y)$ is complete if Y is a Banach space. Let (T_n) be a Cauchy sequence in $L(X, Y)$. Then for each $x \in X$, it is easy to see that $(T_n x)$ is also a Cauchy sequence in Y. So, $\lim T_n x$ exists in Y for each $x \in X$ because Y is complete. Hence, one can define a map $Tx := \lim T_n x \in Y$ for each $x \in X$. It is clear that T is a linear map from X into Y.

It needs to show that $T \in L(X, Y)$ and $||T - T_n|| \to 0$ as $n \to \infty$. Let $\varepsilon > 0$. Since (T_n) is a Cauchy sequence in $L(X, Y)$, there is a positive integer N such that $||T_m - T_n|| < \varepsilon$ for all $m, n \geq N$. So, we have $|| (T_m - T_n)(x) || < \varepsilon$ for all $x \in B_X$ and $m, n \ge N$. Taking $m \to \infty$, we have $||Tx - T_nx|| \le \varepsilon$ for all $n \geq N$ and $x \in B_X$. Therefore, we have $||T - T_n|| \leq \varepsilon$ for all $n \geq N$. From this, we see that $T - T_N \in B(X, Y)$ and thus, $T = T_N + (T - T_N) \in B(X, Y)$ and $\|\overline{T} - T_n\| \to 0$ as $n \to \infty$. Therefore, $\lim_{n} T_n = T$ exists in $B(X, Y)$.

Proposition 5.4. Let X and Y be normed spaces. Suppose that X is of finite dimension n. Then we have the following assertions.

- (i) Any linear operator from X into Y must be bounded.
- (ii) If $T_k : X \to Y$ is a sequence of linear operators such that $T_k x \to 0$ for all $x \in X$, then $||T_k|| \to 0.$

Proof. Using Proposition 4.7 and the notation as in the proof, then there is $c > 0$ such that

$$
\sum_{i=1}^{n} |\alpha_i| \leq c \|\sum_{i=1}^{n} \alpha_i e_i\|
$$

for all scalars $\alpha_1, ..., \alpha_n$. Therefore, for any linear map T from X to Y, we have

$$
||Tx|| \leq \big(\max_{1\leq i\leq n}||Te_i||\big)c||x||
$$

for all $x \in X$. This gives the assertions (i) and (ii) immediately.

Proposition 5.5. Let Y be a closed subspace of X and X/Y be the quotient space. For each element $x \in X$, put $\bar{x} := x + Y \in X/Y$ the corresponding element in X/Y . Define

(5.1)
$$
\|\bar{x}\| = \inf\{\|x+y\| : y \in Y\}.
$$

If we let $\pi: X \to X/Y$ be the natural projection, that is $\pi(x) = \bar{x}$ for all $x \in X$, then $(X/Y, \|\cdot\|)$ is a normed space and π is bounded with $\|\pi\| \leq 1$. In particular, $\|\pi\| = 1$ as Y is a proper closed subspace.

Furthermore, if X is a Banach space, then so is X/Y .

In this case, we call $\|\cdot\|$ in (5.1) the quotient norm on X/Y .

Proof. Notice that since Y is closed, one can directly check that $\|\bar{x}\| = 0$ if and only is $x \in Y$, that is, $\bar{x} = \bar{0} \in X/Y$. It is easy to check the other conditions of the definition of a norm. So, X/Y is a normed space. Also, it is clear that π is bounded with $\|\pi\| \leq 1$ by the definition of the quotient norm on X/Y .

Furthermore, if $Y \subsetneq X$, then by using the Riesz's Lemma 4.10, we see that $\|\pi\| = 1$ at once.

We are going to show the last assertion. Suppose that X is a Banach space. Let (\bar{x}_n) be a Cauchy sequence in X/Y. It suffices to show that (\bar{x}_n) has a convergent subsequence in X/Y by using Lemma 3.2.

Indeed, since (\bar{x}_n) is a Cauchy sequence, we can find a subsequence (\bar{x}_{n_k}) of (\bar{x}_n) such that

$$
\|\bar{x}_{n_{k+1}} - \bar{x}_{n_k}\| < 1/2^k
$$

for all $k = 1, 2,...$ Then by the definition of quotient norm, there is an element $y_1 \in Y$ such that $||x_{n_2} - x_{n_1} + y_1|| < 1/2$. Notice that we have, $\overline{x_{n_1} - y_1} = \overline{x}_{n_1}$ in X/Y . So, there is $y_2 \in Y$ such that $||x_{n_2}-y_2-(x_{n_1}-y_1)|| < 1/2$ by the definition of quotient norm again. Also, we have $\overline{x_{n_2}-y_2} = \overline{x}_{n_2}$. Then we also have an element $y_3 \in Y$ such that $||x_{n_3} - y_3 - (x_{n_2} - y_2)|| < 1/2^2$. To repeat the same step, we can obtain a sequence (y_k) in Y such that

$$
||x_{n_{k+1}} - y_{k+1} - (x_{n_k} - y_k)|| < 1/2^k
$$

for all $k = 1, 2,...$ Therefore, $(x_{n_k} - y_k)$ is a Cauchy sequence in X and thus, $\lim_k (x_{n_k} - y_k)$ exists in X while X is a Banach space. Set $x = \lim_k (x_{n_k} - y_k)$. On the other hand, notice that we have $\pi(x_{n_k} - y_k) = \pi(x_{n_k})$ for all $k = 1, 2, \ldots$ This tells us that $\lim_k \pi(x_{n_k}) = \lim_k \pi(x_{n_k} - y_k) = \pi(x) \in$ X/Y since π is bounded. So, (\bar{x}_{n_k}) is a convergent subsequence of (\bar{x}_n) in X/Y . The proof is \Box complete.

Corollary 5.6. Let $T : X \to Y$ be a linear map. Suppose that Y is of finite dimension. Then T is bounded if and only if ker $T := \{x \in X : Tx = 0\}$, the kernel of T, is closed.

Proof. The necessary part is clear.

Now assume that ker T is closed. Then by Proposition 5.5, $X/\text{ker }T$ becomes a normed space. Also, it is known that there is a linear injection $\tilde{T}: X/\ker T \to Y$ such that $T = \tilde{T} \circ \pi$, where $\pi: X \to X/\ker T$ is the natural projection. Since dim $Y < \infty$ and \widetilde{T} is injective, dim X/ker $T < \infty$. This implies that \widetilde{T} is bounded by Proposition 5.4. Hence T is bounded because $T = \widetilde{T} \circ \pi$ and π is bounded. is bounded. \Box

Define $T: X \to Y$ by $Tx(n) = nx(n)$ for $x \in X$ and $n = 1, 2,...$ Then T is an unbounded operator(Check !!). Notice that ker $T = \{0\}$ and hence, ker T is closed. So, the closeness of ker T does not imply the boundedness of T in general.

We say that two normed spaces X and Y are said to be *isomorphic (resp. isometric isomorphic)* if there is a bi-continuous linear isomorphism (resp. isometric) between X and Y . We also write $X = Y$ if X and Y are isometric isomorphic.

Remark 5.8. Notice that the inverse of a bounded linear isomorphism may not be bounded.

Example 5.9. Let $X : \{f \in C^{\infty}(-1,1) : f^{(n)} \in C^b(-1,1) \text{ for all } n = 0,1,2... \}$ and $Y := \{f \in C^{\infty}(-1,1) : f^{(n)}(x) = 0 \}$ $X : f(0) = 0$. Also, X and Y both are equipped with the sup-norm $\|\cdot\|_{\infty}$. Define an operator $S: X \to Y$ by

$$
Sf(x):=\int_0^x f(t)dt
$$

for $f \in X$ and $x \in (-1,1)$. Then S is a bounded linear isomorphism but its inverse S^{-1} is unbounded. In fact, the inverse $S^{-1}: Y \to X$ is given by

$$
S^{-1}g := g'
$$

for $q \in Y$.

6. Lecture 6: Dual Spaces I

All spaces X, Y, Z, \ldots are normed spaces over the field $\mathbb K$ throughout this section. By Proposition 5.3, we have the following assertion at once.

Proposition 6.1. Let X be a normed space. Put $X^* = B(X, \mathbb{K})$. Then X^* is a Banach space and is called the dual space of X.

Example 6.2. Let $X = \mathbb{K}^N$. Consider the usual Euclidean norm on X, that is, $\|(x_1, ..., x_N)\| :=$ $\sqrt{|x_1|^2 + \cdots + |x_N|^2}$. Define $\theta : \mathbb{K}^N \to (\mathbb{K}^N)^*$ by $\theta x(y) = x_1y_1 + \cdots + x_Ny_N$ for $x = (x_1, ..., x_N)^*$ and $y = (y_1, ..., y_N) \in \mathbb{K}^N$. Notice that $\theta x(y) = \langle x, y \rangle$, the usual inner product on \mathbb{K}^N . Then by the Cauchy-Schwarz inequality, it is easy to see that θ is an isometric isomorphism. Therefore, we have $\mathbb{K}^N = (\mathbb{K}^N)^*$.

Example 6.3. Define a map $T: \ell^1 \to c_0^*$ by

$$
(Tx)(\eta) = \sum_{i=1}^{\infty} x(i)\eta(i)
$$

for $x \in \ell^1$ and $\eta \in c_0$. Then T is isometric isomorphism and hence, $c_0^* = \ell^1$.

Proof. The proof is divided into the following steps. **Step 1.** $Tx \in c_0^*$ for all $x \in \ell^1$. In fact, let $\eta \in c_0$. Then

$$
|Tx(\eta)| \leq |\sum_{i=1}^{\infty} x(i)\eta(i)| \leq \sum_{i=1}^{\infty} |x(i)| |\eta(i)| \leq ||x||_1 ||\eta||_{\infty}.
$$

So, Step 1 follows.

Step 2. T is an isometry.

Notice that by $Step 1$, we have $||Tx|| \le ||x||_1$ for all $x \in \ell^1$. It needs to show that $||Tx|| \ge ||x||_1$ for all $x \in \ell^1$. Fix $x \in \ell^1$. Now for each $k = 1, 2, \ldots$ consider the polar form $x(k) = |x(k)|e^{i\theta_k}$. Notice that $\eta_n := (e^{-i\theta_1}, ..., e^{-i\theta_n}, 0, 0, ...)\in c_0$ for all $n = 1, 2...$ Then we have

$$
\sum_{k=1}^{n} |x(k)| = \sum_{k=1}^{n} x(k)\eta_n(k) = Tx(\eta_n) = |Tx(\eta_n)| \le ||Tx||
$$

for all $n = 1, 2...$ So, we have $||x||_1 \leq ||Tx||$. Step 3. T is a surjection.

Let $\phi \in c_0^*$ and let $e_k \in c_0$ be given by $e_k(j) = 1$ if $j = k$, otherwise, is equal to 0. Put $x(k) := \phi(e_k)$ for $k = 1, 2...$ and consider the polar form $x(k) = |x(k)|e^{i\theta_k}$ as above. Then we have

$$
\sum_{k=1}^{n} |x(k)| = \phi(\sum_{k=1}^{n} e^{-i\theta_k} e_k) \le ||\phi|| ||\sum_{k=1}^{n} e^{-i\theta_k} e_k||_{\infty} = ||\phi||
$$

for all $n = 1, 2...$ Therefore, $x \in \ell^1$.

Finally, we need to show that $Tx = \phi$ and thus, T is surjective. In fact, if $\eta = \sum_{k=1}^{\infty} \eta(k) e_k \in c_0$, then we have

$$
\phi(\eta) = \sum_{k=1}^{\infty} \eta(k)\phi(e_k) = \sum_{k=1}^{\infty} \eta(k)x_k = Tx(\eta).
$$

So, the proof is finished by the *Steps* 1-3 above.

Example 6.4. We have the other important examples of the dual spaces.

- (i) $(\ell^1)^* = \ell^{\infty}$.
- (ii) For $1 < p < \infty$, $(\ell^p)^* = \ell^q$, where $\frac{1}{p} + \frac{1}{q}$ $\frac{1}{q} = 1.$
- (iii) For a locally compact Hausdorff space $X, C_0(X)^* = M(X)$, where $M(X)$ denotes the space of all regular Borel measures on X.

Parts (i) and (ii) can be obtained by the similar argument as in Example 6.3 (see also in [3, Chapter 8. 8. Part *(iii)* is known as the *Riesz representation Theorem* which is referred to [3, Section 21.5] for the details.

In the rest of this section, we are going to show the Hahn-Banach Theorem which is a very important Theorem in mathematics. Before showing this theorem, we need the following lemma first.

Lemma 6.5. Let Y be a subspace of X and $v \in X \setminus Y$. Let $Z = Y \oplus \mathbb{K}v$ be the linear span of Y and v in X. If $f \in Y^*$, then there is an extension $F \in Z^*$ of f such that $||F|| = ||f||$.

Proof. We may assume that $||f|| = 1$ by considering the normalization $f / ||f||$ if $f \neq 0$. $Case \& = \mathbb{R}:$

We first note that since $||f|| = 1$, we have $|f(x) - f(y)| \le ||(x + v) - (y + v)||$ for all $x, y \in Y$. This implies that $-f(x) - ||x+v|| \leq -f(y) + ||y+v||$ for all $x, y \in Y$. Now let $\gamma = \sup\{-f(x) - ||x+v||$: $x \in X$. This implies that γ exists and

(6.1)
$$
-f(y) - \|y + v\| \le \gamma \le -f(y) + \|y + v\|
$$

for all $y \in Y$. We define $F: Z \longrightarrow \mathbb{R}$ by $F(y + \alpha v) := f(y) + \alpha \gamma$. It is clear that $F|_Y = f$. For showing $F \in Z^*$ with $||F|| = 1$, since $F|_Y = f$ on Y and $||f|| = 1$, it needs to show $|F(y + \alpha v)| \le$ $||y + \alpha v||$ for all $y \in Y$ and $\alpha \in \mathbb{R}$.

In fact, for $y \in Y$ and $\alpha > 0$, then by inequality 6.1, we have

(6.2)
$$
|F(y + \alpha v)| = |f(y) + \alpha \gamma| \le ||y + \alpha v||.
$$

Since y and α are arbitrary in inequality 6.2, we see that $|F(y + \alpha v)| \le ||y + \alpha v||$ for all $y \in Y$ and $\alpha \in \mathbb{R}$. Therefore the result holds when $\mathbb{K} = \mathbb{R}$.

Now for the complex case, let $h = \mathcal{R}ef$ and $g = \mathcal{I}mf$. Then $f = h + ig$ and f, g both are real linear with $||h|| \leq 1$. Note that since $f(iy) = if(y)$ for all $y \in Y$, we have $g(y) = -h(iy)$ for all $y \in Y$. This gives $f(\cdot) = h(\cdot) - ih(i\cdot)$ on Y. Then by the real case above, there is a real linear extension H on $Z := Y \oplus \mathbb{R}v \oplus i\mathbb{R}v$ of h such that $||H|| = ||h||$. Now define $F : Z \longrightarrow \mathbb{C}$ by $F(\cdot) := H(\cdot) - iH(i\cdot)$. Then $F \in Z^*$ and $F|_Y = f$. Thus it remains to show that $||F|| = ||f|| = 1$. It needs to show that $|F(z)| \le ||z||$ for all $z \in Z$. Note for $z \in Z$, consider the polar form $F(z) = re^{i\theta}$. Then $F(e^{-i\theta}z) = r \in \mathbb{R}$ and thus $F(e^{-i\theta}z) = H(e^{-i\theta}z)$. This yields that

$$
|F(z)| = r = |F(e^{-i\theta}z)| = |H(e^{-i\theta}z)| \le ||H|| ||e^{-i\theta}z|| \le ||z||.
$$

The proof is finished. \square

Remark 6.6. Before completing the proof of the Hahn-Banach Theorem, Let us first recall one of super important results in mathematics, called Zorn's Lemma, a very humble name. Every mathematics student should know it.

Zorn's Lemma: Let X be a non-empty set with a partially order " \leq ". Assume that every totally order subset C of X has an upper bound, i.e. there is an element $\mathfrak{z} \in \mathfrak{X}$ such that $c \leq \mathfrak{z}$ for all $c \in \mathcal{C}$. Then X must contain a maximal element m, that is, if $m \leq x$ for some $x \in \mathcal{X}$, then $m = x$.

The following is the typical argument of applying the Zorn's Lemma.

Theorem 6.7. Hahn-Banach Theorem : Let X be a normed space and let Y be a subspace of X. If $f \in Y^*$, then there exists a linear extension $F \in X^*$ of f such that $||F|| = ||f||$.

Proof. Let X be the collection of the pairs (Y_1, f_1) , where $Y \subseteq Y_1$ is a subspace of X and $f_1 \in Y_1^*$ such that $f_1|_Y = f$ and $||f_1||_{Y_1^*} = ||f||_{Y^*}$. Define a partial order \leq on $\mathfrak X$ by $(Y_1, f_1) \leq (Y_2, f_2)$ if $Y_1 \subseteq Y_2$ and $f_2|_{Y_1} = f_1$. Then by the Zorn's lemma, there is a maximal element (\widetilde{Y}, F) in X. The maximality of (\widetilde{Y}, F) and Lemma 6.5 will give $\widetilde{Y} = X$. The proof is finished. maximality of (\tilde{Y}, F) and Lemma 6.5 will give $\tilde{Y} = X$. The proof is finished.

Proposition 6.8. Let X be a normed space and $x_0 \in X$. Then there is $f \in X^*$ with $||f|| = 1$ such that $f(x_0) = ||x_0||$. Consequently, we have

$$
||x_0|| = \sup\{|g(x)| : g \in B_{X^*}\}.
$$

Also, if $x, y \in X$ with $x \neq y$, then there exists $f \in X^*$ such that $f(x) \neq f(y)$.

Proof. Let $Y = \mathbb{K}x_0$. Define $f_0: Y \to \mathbb{K}$ by $f_0(\alpha x_0) := \alpha ||x_0||$ for $\alpha \in \mathbb{K}$. Then $f_0 \in Y^*$ with $||f_0|| = ||x_0||$. So, the result follows from the Hahn-Banach Theorem at once.

Remark 6.9. Proposition 6.8 tells us that the dual space X^* of X must be non-zero. Indeed, the dual space X^* is very "Large" so that it can separate any pair of distinct points in X.

Furthermore, for any normed space Y and any pair of points $x_1, x_2 \in X$ with $x_1 \neq x_2$, we can find an element $T \in B(X, Y)$ such that $Tx_1 \neq Tx_2$. In fact, fix a non-zero element $y \in Y$. Then by Proposition 6.8, there is $f \in X^*$ such that $f(x_1) \neq f(x_2)$. So, if we define $Tx = f(x)y$, then $T \in B(X, Y)$ as desired.

Proposition 6.10. With the notation as above, if M is closed subspace and $v \in X \setminus M$, then there is $f \in X^*$ such that $f(M) \equiv 0$ and $f(v) \neq 0$.

Proof. Since M is a closed subspace of X, we can consider the quotient space X/M . Let $\pi : X \to Y$ X/M be the natural projection. Notice that $\overline{v} := \pi(v) \neq 0 \in X/M$ because $\overline{v} \in X \setminus M$. Then by Corollary 6.8, there is a non-zero element $\bar{f} \in (X/M)^*$ such that $\bar{f}(\bar{v}) \neq 0$. So, the linear functional $f := \bar{f} \circ \pi \in X^*$ is as desired.

Proposition 6.11. Using the notation as above, if X^* is separable, then X is separable.

Proof. Let $F := \{f_1, f_2, ...\}$ be a dense subset of X^* . Then there is a sequence (x_n) in X with $||x_n|| = 1$ and $|f_n(x_n)| \ge 1/2||f_n||$ for all n. Now let M be the closed linear span of x_n 's. Then M is a separable closed subspace of X. We are going to show that $M = X$.

Suppose not. Proposition 6.10 will give us a non-zero element $f \in X^*$ such that $f(M) \equiv 0$. From this, we first see that $f \neq f_m$ for all $m = 1, 2...$ because $f(x_m) = 0$ and $f_m(x_m) \neq 0$ for all $m = 1, 2...$

Also, notice that $B(f,r) \cap F$ must be infinite for all $r > 0$. So, there is a subsequence (f_{n_k}) such that $||f_{n_k} - f|| \to 0$. This gives

$$
\frac{1}{2}||f_{n_k}|| \leq |f_{n_k}(x_{n_k})| = |f_{n_k}(x_{n_k}) - f(x_{n_k})| \leq ||f_{n_k} - f|| \to 0
$$

because $f(M) \equiv 0$. So $||f_{n_k}|| \to 0$ and hence $f = 0$. It leads to a contradiction again. Thus, we can conclude that $M = X$ as desired.

Remark 6.12. The converse of Proposition 6.11 does not hold. For example, consider $X = \ell^1$. Then ℓ^1 is separable but the dual space $(\ell^1)^* = \ell^\infty$ is not.

REFERENCES

- [1] R.G. Bartle and I.D. Sherbert, Introduction to Real Analysis, (4th ed), Wiley, (2011).
- [2] J. Muscat, Functional Analysis, Springer, (2014).
- [3] H. Royden and P. Fitzpatrick, Real analysis, fourth edition, Pearson, (2010).
- [4] W. Rudin. Functional analysis, second edition, McGraw-Hill Inc, (1991).